C-6.12 Use solubility rules to write net ionic equations for precipitation reactions in aqueous solution.

Revised Taxonomy Level 3.2 C_A Apply (use) procedural knowledge

Students did not study this concept in physical science

It is essential for students to

- ❖ Understand and use a hierarchical list of solubility rules to predict whether a compound is soluble or insoluble in aqueous solution.
 - Most sodium, potassium, and ammonium compounds are soluble in water
 - Most nitrates, acetates, and chlorates are soluble.
 - Most chlorides are soluble, except those of silver, mercury (I), and lead. Lead (II) chloride is soluble in hot water.
 - Most sulfates are soluble, except those of barium, strontium, and lead.
 - ➤ Most carbonates, phosphates, and silicates are insoluble, except those of sodium, potassium, and ammonium.
 - Most sulfides are insoluble, except those of calcium, strontium, sodium, potassium, and ammonium.
- Predict the formation of a precipitate when aqueous solutions of two soluble ionic compounds are mixed.
 - ➤ Write the possible double-replacement reaction
 - \bullet Zn(NO₃)_{2(aq)} + (NH₄)₂S_(aq) \longrightarrow ZnS_(?) + 2NH₄NO_{3(?)}
 - > Identify the precipitate
 - Zinc sulfide is not a soluble sulfide and is therefore a precipitate
 - ♦ Ammonium nitrate is soluble
 - Add the phase symbols to the products in the double replacement reaction
 - ♦ $Zn(NO_3)_{2(aq)} + (NH_4)_2S_{(aq)}$ \longrightarrow $ZnS_{(s)} + 2NH_4NO_{3(aq)}$
 - > Write the overall ionic equation
 - Write the net ionic equation.

Assessment

The revised taxonomy verb for this indicator is <u>implement (use)</u>, the major focus of assessment will be for students to show that they can "apply a procedure to an unfamiliar task". The knowledge dimension of the indicator, procedural knowledge means "knowledge of subject-specific techniques and methods" In this case the procedure for using a solubility table and the procedure for writing a net ionic equation. A key part of the assessment will be for students to show that they can apply the knowledge to a new situation, not just repeat problems which are familiar. This requires that students have a conceptual understanding the solubility rules and the process for writing net ionic equations.